Extensions 1→N→G→Q→1 with N=C2 and Q=C23⋊C8

Direct product G=N×Q with N=C2 and Q=C23⋊C8
dρLabelID
C2×C23⋊C832C2xC2^3:C8128,188


Non-split extensions G=N.Q with N=C2 and Q=C23⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(C23⋊C8) = C23.19C42central extension (φ=1)64C2.1(C2^3:C8)128,12
C2.2(C23⋊C8) = C23⋊C16central extension (φ=1)32C2.2(C2^3:C8)128,46
C2.3(C23⋊C8) = (C2×C4).98D8central stem extension (φ=1)64C2.3(C2^3:C8)128,2
C2.4(C23⋊C8) = (C2×Q8)⋊C8central stem extension (φ=1)128C2.4(C2^3:C8)128,4
C2.5(C23⋊C8) = C23.M4(2)central stem extension (φ=1)64C2.5(C2^3:C8)128,47
C2.6(C23⋊C8) = C24⋊C8central stem extension (φ=1)16C2.6(C2^3:C8)128,48
C2.7(C23⋊C8) = C23.15M4(2)central stem extension (φ=1)32C2.7(C2^3:C8)128,49
C2.8(C23⋊C8) = (C2×D4)⋊C8central stem extension (φ=1)32C2.8(C2^3:C8)128,50
C2.9(C23⋊C8) = (C2×C42).C4central stem extension (φ=1)32C2.9(C2^3:C8)128,51
C2.10(C23⋊C8) = C24.C8central stem extension (φ=1)164C2.10(C2^3:C8)128,52
C2.11(C23⋊C8) = C23.1M4(2)central stem extension (φ=1)324C2.11(C2^3:C8)128,53

׿
×
𝔽